osculation$55774$ - significado y definición. Qué es osculation$55774$
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es osculation$55774$ - definición

Osculation; Osculate (mathematics); Osculating curves

Osculation         
·noun The act of kissing; a kiss.
II. Osculation ·noun The contact of one curve with another, when the number of consecutive points of the latter through which the former passes suffices for the complete determination of the former curve.
Osculating circle         
CIRCLE OF IMMEDIATE CORRESPONDING CURVATURE OF A CURVE AT A POINT
Kissing circles; Circle of curvature; Circle of osculation
In differential geometry of curves, the osculating circle of a sufficiently smooth plane curve at a given point p on the curve has been traditionally defined as the circle passing through p and a pair of additional points on the curve infinitesimally close to p. Its center lies on the inner normal line, and its curvature defines the curvature of the given curve at that point.

Wikipedia

Osculating curve

In differential geometry, an osculating curve is a plane curve from a given family that has the highest possible order of contact with another curve. That is, if F is a family of smooth curves, C is a smooth curve (not in general belonging to F), and P is a point on C, then an osculating curve from F at P is a curve from F that passes through P and has as many of its derivatives at P equal to the derivatives of C as possible.

The term derives from the Latinate root "osculate", to kiss, because the two curves contact one another in a more intimate way than simple tangency.